

赛默飞色谱及痕量元素分析

白酒安全检测解决方案

再重科技[®] UZONGLAB

成分分析仪器|表面测试仪器|样品前处理仪器

赛默飞色谱及痕量元素分析

白酒安全检测解决方案

我国酒的历史,至少可以追溯到上古时期。酒在中国人传统的饮食文化里是必不可少的,古人将酒的作用归纳为三类:酒以治病,酒以养老,酒以成礼。然而近年来我国的白酒安全形势不容乐观,媒体先后曝出白酒中塑化剂超标,以及含重金属、氰化物、氨基甲酸乙酯和农药残留等食品安全方面问题。酒的质量安全问题受到各大酒企的高度关注。

针对原材料中可能引入的农药残留、重金属污染,在 加工、发酵过程中可能产生的甲醇、杂醇油、氰化物、氨 基甲酸乙酯,以及在酒的存储和运输过程中可能引入的重 金属、塑化剂等,赛默飞可在白酒制造的各个环节提供领 先的检测产品及技术,为白酒安全检测提供解决方案。

优化的 附件

信息丰富 的软件

基于丰富知识 的方法开发

及时的 服务

无与伦比 的承诺

目录

IC检测解决方案

• 赛默《提供日酒安全检测产品及技术	2
• GC, GC-MS检测解决方案	3-4
• AA, ICP, ICP-MS检测解决方案	5-6
• HPLC检测解决方案	7

1

Trace 1300-ISQ系列GC-MS

ISQ系列是久经时间考验的单四极杆质谱, 代表了质谱仪在创新方面近50年的积累,具有行业领先的灵敏度,更低的仪器检测限,满足更严格法规要求。

- Trace 1300系列气相色谱仪采用最新模块化设计,可随时插拔各种检测器,完全满足酒中醇类(FID)和农药残留(ECD,NPD,FPD)等分析,采用功能强大的变色龙软件控制。
- 专利真空锁定装置,快速维护质谱离子源, 无需卸真空,保证高通量分析的连续性。
- 带透镜保护双灯丝,保证灯丝的长寿命。
- 一次进样,FS/SIM同步进行,同时定性和 定量。
- 拓展的不卸真空更换色谱柱模块,保证各种不同应用之间切换色谱柱时质谱无需停机。
- 专利的氦气节省模块,一瓶氦气可使用3.5-14年。
- Triplus RSH三合一样品处理平台集中液体进样、顶空和SPME于一体,同时满足常规分析、酒的风味物质分析、指纹图谱的建立等。

iCE 3000系列原子吸收光谱仪

iCE 3000原子吸收光谱仪有别于其他传统设计的原子吸收光谱仪,是令人耳目一新的仪器。结构紧凑、时尚且使用方便。

iCE 3000原子吸收光谱仪分析效率高,灵敏度高,同时火焰气体消耗低,石墨管寿命长,通用型燃烧头耐腐蚀等都能降低用户的使用成本,使用的SOLAAR Security软件满足CFR21规范,而Wizards向导软件,方便仪器的使用和掌握。

UltiMate® 3000高效液相色谱

UltiMate[®] 3000高效液相色谱系统的所有模块均具有超高效液相兼容性,让所有使用者获得最佳性能。

- •基础型和标准分析型系统最大压力620bar
- 超快速液相系统使超快速分析永无止境
- 双三元液相系统开拓创新,增加通量并拓展 应用范围
- 变色龙软件精心设计,延伸至质谱,行业领先

De

iCAP 7000系列等离子体发射光谱仪

新一代Thermo Scientific iCAP 7000系列 ICP-OES可对大通量样品中的痕量元素进行低成本的多元素同时分析。本产品不仅性能先进、分析效率高,而且使用简便,在遵循国际规范及标准的同时持续提供可靠的数据。

无论是常规高通量分析,还是科学研究,在Thermo Scientific Qtegra智能科技数据处理方案(ISDS) 软件平台的支持下,创新性的电感耦合等离子体发射光谱(ICP-OES)技术均可提供快速低成本的分析。

ICS-5000⁺模块化RFIC-EG系统

世界最先进的IC系统能够提供无与伦比的功能、灵活性和方便性。提供分析型和毛细管型单配置或双配置两种形式,并且提供多种检测器可供选择,Dionex ICS-5000+为所有IC应用提供了最佳的性能。

- 模块化设计能够满足各种不断发展的分析需求
- EG,加上四元梯度混合以及真空脱气装置, 能够提供最大的淋洗液灵活性
- 精准的温度控制能够显著降低噪声和漂移

iCAP Q等离子体质谱仪

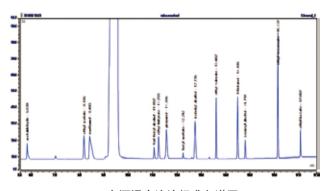
• 最佳的干扰去除技术

酒中对Cr、As和Se等低质量数元素均有分析要求,iCAP Q的Qcell碰撞反应池技术可以提供独特的质量筛选功能,有效去除低质量数待测元素的干扰物。

• 优异的耐有机性能

最新设计的PF 发生器对有机的耐受性,在 分析高浓度白酒时,无需使用加氧设备能够实 现高浓度白酒的直接分析稳定性及准确性。

• 最宽的动态范围


iCAP Q可以通过优化分辨率,实现高浓度K、Ca、Na、Mg等元素的分析,以及痕量Cd、Hg、Pb的精准定量。

GC、GC-MS检测解决方案

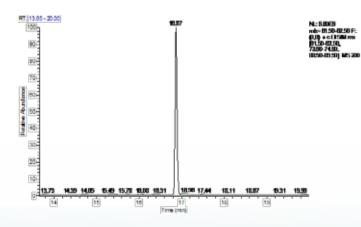
赛默飞气相色谱法测定白酒中的微量成分

仪器: Trace 1310 GC, FID检测器

分析条件: TR-FFAP毛细柱 60m×0.25mm×0.25μm,柱温: 40℃ (4min)-5℃/min-60℃ (1min)-20℃/min-220℃ (10min); 分流进样 (分流比50:1); 进样口温度: 220℃; 载气: 氮气,恒流模式,1 mL/min。进样量: 1μL。FID检测器:温度250℃, 氢气: 35 mL/min,空气: 350 mL/min,尾吹气: 氮气,40 mL/min。

白酒混合溶液标准色谱图

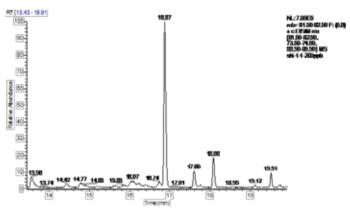
实际样品测定结果(单位: mg/L)


保留时间	化合物	样品1	样品2	样品3	样品4	样品5
5.83	乙醛	74.1	29.1	37.0	44.1	51.3
8.16	乙酸乙酯	1141.0	628.2	1265.7	1639.2	806.1
8.40	甲醇	5.5	3.6	5.0	7.1	9.2
11.05	仲丁醇	2.4	1.1	2.0	2.0	1.6
11.23	丁酸乙酯	6.7	15.0	15.0	10.3	11.7
11.56	正丙醇	23.2	20.0	85.7	111.0	104.1
12.74	异丁醇	21.8	19.8	9.5	11.9	10.1
13.60	戊酸乙酯	5.1	9.8	4.2	3.6	2.1
14.48	正丁醇	31.3	20.5	28.9	19.3	15.8
14.80	异戊醇	1594.3	1098.2	1986.3	50.0	47.1
16.14	己酸乙酯	372.3	185.9	458.1	552.8	425.3
17.07	乳酸乙酯	287.1	225.9	657.2	1108.9	519.3

采用赛默飞世尔气相色谱仪测定白酒中的微量成分,白酒直接进样,内标法定量,方法简单,定量准确。

赛默飞GC-MS法测定白酒、黄酒和葡萄酒中的氨基甲酸乙酯

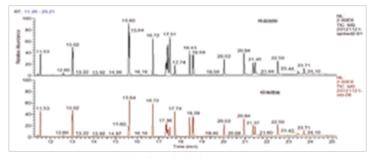
仪器: Trace 1310 GC-ISQ气质联用仪


样品前处理:精确称取样品10g于50mL离心管中,加水调节样品中乙醇含量至20%以下。加入2g氯化钠振摇2-3min,加入10mL二氯甲烷,涡旋混匀1min,静止分层或离心分层,收集有机相。重复提取一次,将有机相合并,浓缩至近干,采用1mL乙腈复溶。

标准样品TIC图

分析条件: 色谱柱: TG-WAXMS(30 m×0.25 mm×0.25 μm),柱温: 60℃(1 min),5℃/min到150℃(0 min),10℃/min到240℃(2 min);不分流进样;进样口温度: 220℃;恒流模式,1 mL/min。进样量: 1 μL。选择离子模式扫描,扫描离子分别为m/z 62(定量离子),74,89。

于黄酒样品中添加标准品,加标浓度 为50、100、200 µg/L,考察氨基甲酸 乙酯的加标回收情况。实验结果表明三水 平的加标回收率分别为82.0%、85.2%、 89.4%,符合日常分析检测的要求。


样品加标TIC图

赛默飞GC-MS法测定白酒中邻苯二甲酸酯类物质残留

仪器: Trace 1310 GC-ISQ气质联用仪

样品前处理: 采用去除乙醇后正己烷提取

分析条件: TR-35 MS, 30 m, 0.25 mm, 0.25 μ m; 柱 温: 80 \mathbb{C} (1 min), 10 \mathbb{C} /min到280 \mathbb{C} , 保持10 min。;不分流进样;进样口温度: 280 \mathbb{C} ; 恒流模式, 1 mL/min。

样品加标与标准溶液TIC图

化合物保留时间与定量离子

化合物	保留时间min	定量离子
DMP	11,53	163
DEP	13.02	149
DIBP	15.64	149
DBP	16.72	149
DMPP:	17.33/17.36	149
DMEP	17.74	59
DAP	18.43	149
DEEP	18.50	72
DHP	20.02	149
BBP	20.94	149
DEHP	21.37	149
DBEP	21.45	149
DCHP	22.60	149
DOP	23.43	149
DPP	23.70	225
DNP	24.0-24.4	149

分析物回收率与精密度结果

化合物	添加水平 回收率(%)	(0.1 mg/L) RSD (%)	添加水平 (0.3 回收率 (%)	3mg/L) RSD (%)
DMP	95.0	5.4	99.0	4.7
DEP	103	5.5	108	2.2
DIBP	101	2.0	101	3.2
DBP	107	6.6	101	1.3
DMPP	105	3.3	107	5.7
DMEP	86.3	5.3	83.2	3.4
DAP	109	6.0	104	1.6
DEEP	103	4.1	104	3.2
DHP	104	4.6	109	3.7
BBP	110	3.6	103	3.7
DEHP	102	1.4	105	4.1
DBEP	104	5.0	108	4.6
DCHP	103	4.1	103	3.6
DOP	105	5.8	104	2.6
DPP	108	4.2	109	1.8
DNP	107	8.4	101	5.4

方法采用Trace 1310 GC-ISQ气质联用仪分析了白酒中16种邻苯二甲酸酯类物质残留,具有灵敏、简单快速、准确、线性范围宽等优点,满足白酒中邻苯二甲酸酯类物质的检测需要。

AA、ICP、ICP-MS检测解决方案

白酒酿造食品原料中金属测定的典型的样品处理方法

准确称取0.5g样品于微波消解罐中,加入7mL HNO₃,按照微波消解程序进行消解

窖泥和白酒的前处理

客泥: 准确称取0.2g(精确到0.0001g)客泥置于微波消解罐内,分别加入5mL浓硝酸和1mL氢氟酸,置于微波消解仪中进行处理;同时监测制备空白。冷却后,采用超纯水(≥ $18.2M\Omega$)定容至50g,过滤后上机测试。

原浆或者成品酒:配置2% HNO₃溶液,将酒原浆用2%硝酸溶液1:10稀释后直接上机进行测定。

原浆或者成品酒直接上机(ICP-MS & ICPO-ES配制有机加氧系统)

赛默飞iCE 3000测定酒类中的Fe Cu Zn

采用iCE3000系列原吸,可以进行酒类的稀释直接进样分析,其样品测试结果及加标回收率都可满足客户需求。

酒类样品采用AAS实测结果

Sample ID	Iron (mg/L)	Copper (mg/L)	Zinc (mg/L)
White wire*	1.165	0.027	0.988
Rosë wine*	1.835	0.028	0.514
Red wine*	2.437	0.037	0.575

酒类样品加标回收测定

Sample ID	Expected concentration spike. (mg/L)		•				Spike Recovery (%)		
	Iron	Copper	Zinc	Iron	Copper	Zinc	Iron	Copper	Zinc
White wine	2.789	2.507	1.247	2.616	2.429	1.202	93.8	96.9	96.4
Rose wine	2.965	2.507	1.129	2.995	2.463	1.056	101	98.3	93.5
Red wine	3.122	2.509	1.144	3.131	2.435	1.097	100.3	97.1	95.9

iCAP7000系列ICP-OES快速测定原料大曲中的多种重金属

大曲中多种重金属检测结果 单位: (ppm), *标记的元素单位: %

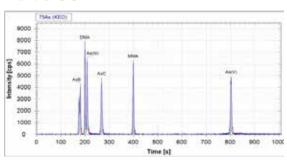
	GBW08503B		大曲1	大曲2	大曲3	大曲4	大曲5	大曲6	大曲7
	证书值	测定值							
Ag	/	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1
Al	/	9	149	139	109	209	144	47	56
As	0.32 ± 0.07	0.32	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2
Ca	402 ± 31	390	526	672	726	765	664	633	730
Cd	0.15 ± 0.04	0.15	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Co	/	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05
Cr	/	0.03	0.30	0.29	0.23	0.33	0.28	0.15	0.14
Cu	3.98 ± 0.43	4.07	5.85	7.00	7.07	7.43	6.57	5.70	5.80
Fe	37.7 ± 9.4	33.0	190.5	167.7	146.7	199.0	157.7	144.7	114.7
K*	0.237 ± 0.010	0.220	0.409	0.485	0.490	0.567	0.519	0.497	0.464
Mn	22 ± 2	22	34.6	39.5	39.5	45.3	40.7	34.4	33.8
Mg*	0.0616 ± 0.0044	0.0630	0.119	0.135	0.136	0.147	0.138	0.120	0.121
Na	8.3 ± 1.1	8.9	196	225	231	261	234	224	233
Ni	/	0.06	0.26	0.25	0.23	0.27	0.20	0.16	0.16
Pb	0.34 ± 0.13	0.28	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Zn	20.6 ± 1.7	20.4	28.5	34.0	35.7	36.7	34.7	30.0	30.7

iCAP Q ICP-MS直接进样测定白酒中铅、锰、砷、汞、锡等元素

无需加入氧气消除有机物,方法检出限低、精密度及准确度高。

白酒测试及加标结果

口相例此及加怀结木							
μg/kg	51V (KED)	52Cr (KED)	55Mn (KED)	57Fe (KED)	59Co (KED)	60Ni (KED)	63Cu (KED)
清香型56% vol	0.61	1.12	9.34	9.32	0.05	1.69	3.08
浓香型52% vol	0.07	4.01	13.04	61.10	0.09	3.64	0.36
浓香型45% vol	ND	4.15	0.20	33.90	ND	0.07	ND
酱香型52% vol	ND	0.53	0.39	15.05	ND	0.45	ND
清香型38% vol	ND	1.80	0.78	20.03	ND	0.78	2.45
酱香型52% vol +20ppb回收率%	95.2	95.1	96.5	98.9	96.3	96.6	97.9
清香型38% vol+20ppb回收率%	99.6	99.0	100.2	98.5	100.8	102.8	104.5
LOD	0.046	0.079	0.013	0.755	0.007	0.020	0.093
μg/kg	66Zn (KED)	75As (KED)	111Cd (KED)	202Hg (KED)	205TI (KED)	208Pb (KED)	238U (KED)
清香型56% vol	5.48	0.69	ND	ND	ND	0.16	ND
浓香型52% vol	16.45	37.55	1.15	ND	0.16	0.07	0.03
浓香型45% vol	10.08	12.64	0.26	ND	ND	1.94	ND
酱香型52% vol	1.04	2.59	ND	ND	ND	0.13	ND
清香型38% vol	9.04	0.68	ND	ND	ND	0.43	ND
酱香型52% vol +20ppb回收率%	103.0	106.2	106.8	95.2	100.1	97.3	98.7
清香型38% vol+20ppb回收率%	116.3	113.5	114.0	96.4	104.1	100.6	100.9
LOD	0.265	0.021	0.001	0.010	0.005	0.002	0.002


赛默飞IC-ICP-MS 联用实现As形态分析

0.45 ppb每个As的形态标准

- 6 个形态
- ~8000 cps / ppb
- ~15 分钟测定

离子交换:

- Dionex AS7 (2x250mm)
- 梯度洗脱 20-200 mM碳酸铵
- 流速: 0.3 mL/min
- 注射体积: 20 µL

IC-ICP-MS 联用6种As形态分析

HPLC检测解决方案

UltiMate® 3000 HPLC-荧光检测器FLD测定白酒中氨基甲酸乙酯

仪器: UltiMate 3000液相色谱仪配置FLD检测器。

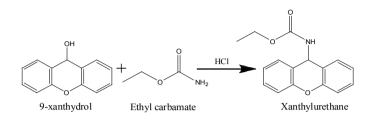
标准品和样品前处理方法: 9-羟基吨用丙醇配置成浓度 为0.02 mol/L的衍生试剂; 氨基甲酸乙酯用40%乙醇水 溶液配置成4.2 mg/mL的标准品母液。

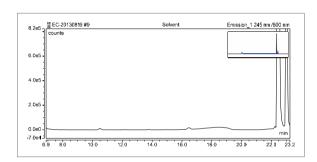
样品处理: 白酒、红酒样品用40%乙醇水溶液稀释三倍,黄酒样品稀释五倍。取500 μL样品和100 μL的9-羟基吨溶液,加入50μL浓度为1.5 mol/L的HCl在黑暗中反应30 min。反应过程如下图。反应后的溶液过微孔滤膜、为待测样品进样分析。

分析条件: 色谱柱: Accucore® C18, 4.6×150mm, 2.6μm; 检测器工作参数: Excitation: 245nm,Emission: 600 nm, 采集频率: 5Hz; 进样体积: 15μl; 柱温: 30℃; 流动相: A: ACN, B: 20 mM乙酸钠, 梯度洗脱条件:

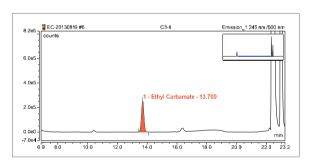
时间 (min)	A%	В%	Curve
0	45	55	5
18	55	45	5
19	95	5	5
24	95	5	5
24.1	45	55	5
26	45	55	5

方法精密度和回收率:

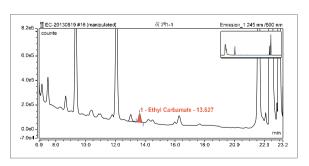

精密度的结果


进样次数	峰面积(count.min) 250ng/mL	峰面积(count.min) 50ng/mL	峰面积(count.min) 5ng/mL
第一针	59765	12738	1132
第二针	59700	13967	1213
第三针	58476	13788	1208
第四针	56399	13442	1196
RSD%	2.69	4.03	3.16

回收率结果


样品	加入量(ng/mL)	回收量(ng/mL)	回收率(%)
白酒	20	20.63	103.2
红酒	40	39.36	98.4
黄酒	60	56.93	94.9

该分析方法前处理相对简单,且验证了HPLC-FLD 方法在国内实际应用的可能。



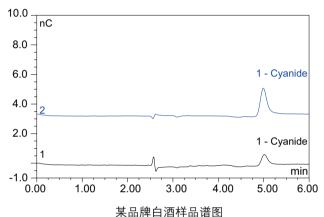
空白溶剂色谱图

氨基甲酸乙酯标准品色谱图

实际样品测定色谱图

IC检测解决方案

寒默飞离子色谱法-脉冲安培检测蒸馏白洒中氰化物


木薯则是酒精工业的良好原料,以木薯或野 生植物酿制的酒,研究发现其氰化物含量均较 高。氰化物是白酒的一项重要安全检测指标。在 GB2757-2012《食品安全国家标准 蒸馏酒及其 配制酒》中规定氰化物指标均按100%酒精度折 算时, 白酒中氰化物应小于8 mg/L(以HCN计 算)。国家标准方法为比色法,其必须经过蒸馏 步骤,且常存在浑浊现象而严重干扰测定结果。 气相色谱法方法操作非常繁琐,需要经过复杂处 理将氰化物转化为溴化氰再进行检测。离子色谱 检测白酒中氰化物的方法简单,借助干离子交换 色谱柱的分离能力可以减少样品基体对于氰化物 结果的干扰。

采用该方法,样品无需复杂的蒸馏和衍生等 处理步骤, 经稀释过滤后即可讲样检测, 适用干 市场上各品牌白酒样品的分析,也可应用于生产 过程的实时监测,可保障生产效率、产品品质和 消费者的饮酒安全。

仪器. Dionex ICS-2100。配FD50A由化学检测器 色谱柱: Dionex IonPac AS11-HC分析柱, 4 mm×250 mm Dionex IonPac AG11-HC保护柱, 4 mm×50 mm 淋洗液: 12 mmol/l 氢氧化钾(FG产生), 等度淋洗 柱温:

流谏. 1.00 ml /min 进样量: 25 µ L

检测器: ED50A,银工作电极,Ag/AgCl参比电极模式,脉冲安培三电位波形检测

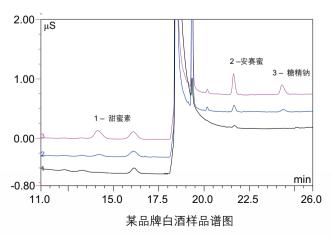
1.白酒样品; 2.白酒样品加标10 µ g/L氰根

寨默飞离子色谱法测定白酒中的甜味剂

不少白酒企业出于自身利益考虑,通过在白 酒中添加甜味剂以改善口感。另外含有甜味剂的 酒用香精香料的使用也可能导致白酒产品中甜味 剂超标。研究表明, 高剂量的甜味剂会对人体的 肝脏和神经系统造成伤害, 甚至引发癌症。因此 甜味剂的合理使用不仅关系到产品的质量,更 与广大消费者的健康安全密不可分。GB 2760-2011《食品添加剂使用标准》中规定,禁止在发 酵酒中添加甜味剂。常见甜味剂甜蜜素、安赛蜜 和糖精钠均含有可电离基团, 因此可通过阴离子 交换分离, 电导检测器直接检测。

本法样品处理简便易行、快速, 无需复杂的 设备和试剂,对环境友好,易于推广。白酒样品 稀释10 倍, 并调整pH至9-10, 分别过0.22 µ m 膜和前处理净化柱后即可进样分析。方法抗干扰 能力强,对甜味剂选择性高,定性定量准确,结 果重复性好。

∕\₩. Dionex ICS-5000⁺型离子色谱仪


分析柱: Dionex IonPac AS17-C分析柱, 4 mm×250 mm Dionex IonPac AG17-C保护柱, 4 mm×50 mm

淋洗液: 氢氧化钾(EG产生),梯度淋洗, 0-16min, 3mmol/L; 16.1-25min., 70 mmol/l : 25.1-30min., 3 mmol/l

流谏. 1.0 ml /min 柱箱温度. 30 ℃ 讲样体积.

250 u l

电导检测器, Dionex AFRS 500 4mm抑制器, 外接水模式 检测器.

关于赛默飞世尔科技

赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。公司年销售额170亿美元,在50个国家拥有员工约50,000人。我们的使命是帮助客户使世界更健康、更清洁、更安全。我们的产品和服务帮助客户加速生命科学领域的研究、解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。借助于Thermo Scientific、Life Technologies、Fisher Scientific和 Unity™ Lab Services四个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。

赛默飞世尔科技中国

赛默飞世尔科技进入中国已超过30年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过3800名。为了满足中国市场的需求,现有8家工厂分别在上海、北京和苏州运营。我们在全国共设立了7个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2000名工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。

再重科技[®]ÜZONGLAB

成分分析仪器 | 表面测试仪器 | 样品前处理仪器 上海市闵行区春申路2525号芭洛商务大楼

电话: 021-8039 4499 传真: 021-5433 0867 上海|北京|沈阳|太原|长沙|广州|成都|青岛|香港 全国销售和售后服务电话: 400-808-4598 邮编:201104 , China 邮箱:shanghai@uzong.cn

更多信息请访问:www.uzong.cn

Thermo Fisher S C | E N T | F | C

了解我们

微信公众号